Identificação de incêndios florestais utilizando segmentação de imagens e aprendizado de máquina
Ano de defesa: | 2023 |
---|---|
Autor(a) principal: | |
Outros Autores: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal do Amazonas
Faculdade de Tecnologia Brasil UFAM Programa de Pós-graduação em Engenharia Elétrica |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://tede.ufam.edu.br/handle/tede/9749 |
Resumo: | Este trabalho propõe o uso de diferentes técnicas de pré-processamento de dados e aprendizado profundo para análise de imagens e detecção de incêndios florestais. As imagens utilizadas para treinamento têm origem em dois diferentes bancos de dados com variação de horário, estação climática e posicionamento. Para o treinamento, optou-se por empregar algoritmos de aprendizagem supervisionada e classificadores probabilísticos, totalizando três origens de treinamento com variações de parâmetros e diferentes técnicas de pré-processamento complementares, como color perception e quartis. A principal métrica de avaliação se refere a acurácia e ao índice de verdadeiros-positivos e falsos-negativos, essenciais para essa aplicação, por se tratar de um sistema de identificação e alerta. Também se considera valores de tempo de processamento e treinamento. Os resultados obtidos foram superiores ao estado-da-arte para identificação de incêndios florestais, com acurácias superiores a 99,6% utilizando a técnica Random Forest. |