Reconhecimento automático de armas de fogo no interior de veículos.
Ano de defesa: | 2017 |
---|---|
Autor(a) principal: | |
Outros Autores: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal do Amazonas
Faculdade de Tecnologia Brasil UFAM Programa de Pós-graduação em Engenharia Elétrica |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://tede.ufam.edu.br/handle/tede/5853 |
Resumo: | O aumento da violência urbana no Brasil tem destacado o crescente número de assaltos a mão armada no interior de veículos. Os dados registrados impressionam, somando o alarmante número de 57 veículos assaltados por hora no país. Manaus apresenta-se como uma das cidades brasileiras com maior número de assaltos a veículos. O Sindicato das Empresas de Transporte de Passageiros do Estado do Amazonas (Sinetram) já registra, apenas nos primeiros quatro meses de 2017 o alarmante número de 1.120 assaltos a ônibus em Manaus. Por outro lado, o Sindicato dos Taxistas do Amazonas (Sintax-AM) aponta que, pelo menos dez taxistas são assaltados por dia na cidade. O objetivo deste trabalho é o desenvolvimento de um método que faça o reconhecimento automático de assaltos a mão armada no interior de veículos automotivos. Contribuindo dessa forma para o combate a violência urbana e viabilizando a atuação mais rápida e efetiva dos agentes de segurança pública. A abordagem que será adotada consiste na criação de um conjunto de descritores locais, gerados a partir de uma sequência de imagens de armas de fogo (revólveres e pistolas). Esses descritores fornecem uma base de informações capaz de identificar a presença de armas de fogo, nas imagens capturadas do interior de veículos de passeio. Essa abordagem dispensa a localização da arma no espaço da imagem e a reconhece a partir de um conjunto de características otimizadas. Os resultados obtidos mostram que o método desenvolvido reconhece a arma de fogo em diferentes situações de movimento, com índices de acerto acima de 80% em todas as métricas utilizadas. O método é integrável aos sistemas de segurança veicular modernos e suficientemente robusto para o monitoramento contínuo do interior de carros de passeio. |