Um método para monitoramento e geração de feedbacks em atividades físicas repetitivas baseado em Máquinas de Boltzmann Restritas

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Alencar, Márcio André da Costa
Outros Autores: https://lattes.cnpq.br/7247102045522245, https://orcid.org/0000-0002-6070-9682
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Amazonas
Instituto de Computação
Brasil
UFAM
Programa de Pós-graduação em Informática
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://tede.ufam.edu.br/handle/tede/10035
Resumo: A prática de atividades físicas, muitas vezes realizadas em ambientes como academias e sessões de fisioterapia, exige a execução precisa dos movimentos para garantir resultados eficazes e evitar lesões. Atualmente, abordagens que combinam tecnologias vestíveis e Inteligência Artificial (IA) são empregadas para identificar a correta execução dos movimentos. No entanto, essas abordagens têm limitações, pois estão vinculadas a atividades físicas pré-programadas e não fornecem orientações específicas para corrigir os movimentos. Esta tese propõe uma abordagem disruptiva para gerar modelos em tempo de execução capazes de oferecer sugestões de ajustes aos usuários, visando a correta execução do movimento. Utilizando dados de sensores inerciais, como acelerômetro e giroscópio, a abordagem monitora, aprende padrões, analisa e fornece sugestões de correções para os dados inerciais de cada segmento corporal, por meio de uma Máquina de Boltzmann Restrita. Os resultados demonstram que a geração desses modelos em tempo de execução, capaz de se adaptar a diferentes biotipos e limitações dos usuários, é eficiente na produção de orientações de ajustes nos movimentos, resultando em uma semelhança até 3,68 vezes maior com o movimento correto. Isso valida a eficácia do método proposto para seu propósito.