Um método para monitoramento e geração de feedbacks em atividades físicas repetitivas baseado em Máquinas de Boltzmann Restritas
Ano de defesa: | 2023 |
---|---|
Autor(a) principal: | |
Outros Autores: | , |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal do Amazonas
Instituto de Computação Brasil UFAM Programa de Pós-graduação em Informática |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://tede.ufam.edu.br/handle/tede/10035 |
Resumo: | A prática de atividades físicas, muitas vezes realizadas em ambientes como academias e sessões de fisioterapia, exige a execução precisa dos movimentos para garantir resultados eficazes e evitar lesões. Atualmente, abordagens que combinam tecnologias vestíveis e Inteligência Artificial (IA) são empregadas para identificar a correta execução dos movimentos. No entanto, essas abordagens têm limitações, pois estão vinculadas a atividades físicas pré-programadas e não fornecem orientações específicas para corrigir os movimentos. Esta tese propõe uma abordagem disruptiva para gerar modelos em tempo de execução capazes de oferecer sugestões de ajustes aos usuários, visando a correta execução do movimento. Utilizando dados de sensores inerciais, como acelerômetro e giroscópio, a abordagem monitora, aprende padrões, analisa e fornece sugestões de correções para os dados inerciais de cada segmento corporal, por meio de uma Máquina de Boltzmann Restrita. Os resultados demonstram que a geração desses modelos em tempo de execução, capaz de se adaptar a diferentes biotipos e limitações dos usuários, é eficiente na produção de orientações de ajustes nos movimentos, resultando em uma semelhança até 3,68 vezes maior com o movimento correto. Isso valida a eficácia do método proposto para seu propósito. |