Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
Santos, Daniel Felipe Silva [UNESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/151478
|
Resumo: |
Neste trabalho é proposto um método para reconhecer veículos em imagens coloridas baseado em uma rede neural Perceptron Multicamadas pré-treinada por meio de técnicas de aprendizado em profundidade, sendo uma das técnicas composta por Máquinas de Boltzmann Profundas e projeção bilinear e a outra composta por Máquinas de Boltzmann Profundas Multinomiais e projeção bilinear. A proposição deste método justifica-se pela demanda cada vez maior da área de Sistemas de Transporte Inteligentes. Para se obter um reconhecedor de veículos robusto, a proposta é utilizar o método de treinamento inferencial não-supervisionado Divergência por Contraste em conjunto com o método inferencial Campos Intermediários, para treinar múltiplas instâncias das redes profundas. Na fase de pré-treinamento local do método proposto são utilizadas projeções bilineares para reduzir o número de nós nas camadas da rede. A junção das estruturas em redes profundas treinadas separadamente forma a arquitetura final da rede neural, que passa por uma etapa de pré- treinamento global por Campos Intermediários. Na última etapa de treinamentos a rede neural Perceptron Multicamadas (MLP) é inicializada com os parâmetros pré-treinados globalmente e a partir deste ponto, inicia-se um processo de treinamento supervisionado utilizando gradiente conjugado de segunda ordem. O método proposto foi avaliado sobre a base BIT-Vehicle de imagens frontais de veículos coletadas de um ambiente de tráfego real. Os melhores resultados obtidos pelo método proposto utilizando rede profunda multinomial foram de 81, 83% de acurácia média na versão aumentada da base original e 91, 10% na versão aumentada da base combinada (Carros, Caminhões e Ônibus). Para a abordagem de redes profundas não multinomiais os melhores resultados foram de 81, 42% na versão aumentada da base original e 91, 13% na versão aumentada da base combinada. Com a aplicação da projeção bilinear, houve um decréscimo considerável nos tempos de treinamento das redes profundas multinomial e não multinomial, sendo que no melhor caso o tempo de execução do método proposto foi 5, 5 vezes menor em comparação com os tempos das redes profundas sem aplicação de projeção bilinear. |