Estimativas para o primeiro autovalor positivo de um operador elíptico de segunda ordem na forma divergente e alguns teoremas de comparação
Ano de defesa: | 2020 |
---|---|
Autor(a) principal: | |
Outros Autores: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal do Amazonas - Universidade Federal do Pará
Instituto de Ciências Exatas Brasil UFAM - UFPA Programa de Pós-graduação em Matemática |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://tede.ufam.edu.br/handle/tede/8294 |
Resumo: | Nesta tese, nós obtemos estimativas inferiores para o primeiro autovalor positivo de um operador diferencial elíptico de segunda ordem na forma divergente em variedades Riemannianas com peso, sendo elas fechadas ou compactas com bordo. Este operador generaliza operadores tais como o operador laplaciano, o laplaciano deformado e o quadrado de Cheng-Yau. As estimativas em variedades fechadas decorrem de uma fórmula tipo Bochner já conhecida para este operador, enquanto que as estimativas em variedades compactas com bordo são decorrentes de uma fórmula tipo Reilly obtida nesta tese. Nós também obtemos resultados de comparação para a curvatura média de esferas geodésicas, generalizando o teorema local de comparação do laplaciano. |