Identidades de grupo em unidades de Anel de Grupo
Ano de defesa: | 2018 |
---|---|
Autor(a) principal: | |
Outros Autores: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal do Amazonas
Instituto de Ciências Exatas Brasil UFAM Programa de Pós-graduação em Matemática |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://tede.ufam.edu.br/handle/tede/8775 |
Resumo: | Neste trabalho abordamos a confirmação da conjectura de Brian Hartley, a saber: "Seja K um corpo e G um grupo de torção. Se U(KG), o grupo das unidades da álgebra de grupo KG, satisfaz uma identidade de grupo, então KG satisfaz uma identidade polinomial. Estudamos o caso particular desta conjectura, seguindo de perto o trabalho intitulado "Group identities on units of rings, de Antônio Giambruno, Eric Jespers e Ângela Valenti, os quais provaram a conjectura de Hartley para anéis de grupo RG sobre um domínio comutativo infinito R de característica $p\ge0$ e G um p’-grupo de torção. |