A forma fraca do teorema de peano em espaços de banach de dimensão infinita

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Mendes, Abraão Caetano
Outros Autores: http://lattes.cnpq.br/3163314640370065
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Amazonas
Instituto de Ciências Exatas
Brasil
UFAM
Programa de Pós-graduação em Matemática
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://tede.ufam.edu.br/handle/tede/4604
Resumo: Por muito tempo procurou-se responder à questão da validade (ou não-validade) do Teorema de Peano em espaços de Banach de dimensão infinita. Mas, em 1974, Godunov mostrou que o Teorema de Peano é válido em um espaço de Banach X se, e somente se, X tem dimensão finita (veja [13]). Voltou-se, então, a atenção para a Forma Fraca do Teorema de Peano no caso de dimensão infinita. Em 2003, Shkarin mostrou que se X é um espaço de Banach contendo um subespaço complementado com base de Schauder incondicional, então a Forma Fraca do Teorema de Peano não é válida (veja [14]). Veremos os detelhes deste resultado ao longo deste trabalho.