Uma caracterização das superfícies de delaunay

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Bezerra, Geziel Damasceno
Outros Autores: http://lattes.cnpq.br/3340630923988411
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Amazonas
Instituto de Ciências Exatas
BR
UFAM
Programa de Pós-graduação em Matemática
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://tede.ufam.edu.br/handle/tede/3674
Resumo: Admite-se que, numa superfície completa, conexa e orientada imersa no espaço euclidiano tri-dimensional com curvatura média constante não nula, existe um triângulo geodésico cujos ângulos internos satisfazem uma relação integral envolvendo a curvatura média e o ângulo formado pelo vetor unitário paralelo a um eixo coordenado qualquer do espaço ambiente e o vetor unitário normal a superfície, e sob tais hipóteses mostra-se que a imersão é uma superfície de revolução, ou seja, uma superfície de Delaunay. Em seguida darse uma caracterização da esfera alterando-se algumas hipóteses no resultado anterior.