Aplicação de Gauss hiperbólica e superfícies CMC em H2xR
Ano de defesa: | 2019 |
---|---|
Autor(a) principal: | |
Outros Autores: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal do Amazonas
Instituto de Ciências Exatas Brasil UFAM Programa de Pós-graduação em Matemática |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://tede.ufam.edu.br/handle/tede/7151 |
Resumo: | Neste trabalho estudamos propriedades geométricas de superfícies com projeção vertical regular e curvatura média constante em H^2xR. Para o caso especial em que a curvatura média constante é igual 1/2, é construída uma certa aplicação sobre o plano hiperbólico H^2 chamada Aplicação de Gauss Hiperbólica e posteriormente é obtida a harmonicidade da mesma. Outro ponto chave abordado é que sob certas condições impostas à superfície, sempre é possível a partir de uma aplicação harmônica G dada, recuperar uma superfície de curvatura média H = 1/2, tal que G é a sua Aplicação de Gauss Hiperbólica e cuja parametrização é dada em termos de G. Tais resultados foram obtidos por Isabel Fernández e Pablo Mira em "Harmonic Maps and Constant Mean Curvature Surfaces in H^2xR". As demonstrações destes resultados fazem uso de parâmetros conformes e da utilização de técnicas conhecidas na teoria de superfícies de curvatura média constante. Isso permite encontrarmos condições iniciais para recuperar uma superfície a partir de um sistema de equações diferenciais parciais. |