Programação genética aplicada à busca de imagens

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Saraiva, Patrícia Correia
Outros Autores: http://lattes.cnpq.br/3817196969731871
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Amazonas
Instituto de Computação
Brasil
UFAM
Programa de Pós-graduação em Informática
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://tede.ufam.edu.br/handle/tede/4149
Resumo: O volume de informação codificada sob a forma de imagens tem aumentado de forma significativa nas últimas décadas. O uso cada vez mais frequente de tablets, smartphones, câmeras digitais e notebooks com suporte à aquisição de imagens e a facilidade para tornar essas imagens disponíveis publicamente em repositórios compartilhados, são fatores que contribuem ainda mais para este cenário. Atualmente, imagens são usadas nas mais diversas aplicações, seja para registrar momentos e ações em jornais e revistas eletrônicas, ou redes sociais, ou ainda para divulgar produtos em aplicações de comércio eletrônico. Na medida em que cresce o volume de imagens, cresce também o interesse por sistemas capazes de realizar busca em bases de dados de imagem. O objetivo principal desta tese é investigar o impacto do uso de programação genética (GP - Genetic Progamming) como ferramenta para combinar diferentes fontes de informação disponíveis durante a busca de imagens. Mais especificamente, foram abordados dois contextos distintos como estudos de caso: a busca de imagens na Web utilizando informação textual extraída automaticamente das páginas Web e, a busca visual por meio da expansão da imagem de consulta utilizando informação derivadas de diferentes modalidades de dados, como texto e conteúdo visual. Para avaliar as estratégias propostas para o contexto de busca visual, escolheu-se como estudo de caso a busca visual de produtos em lojas de comércio eletrônico voltadas para o segmento de moda. Os experimentos realizados no contexto de busca de imagens na Web mostraram que a abordagem evolucionária superou a melhor abordagem utilizada como baseline, com ganhos de 22,36% em termos de MAP. No cenário de busca visual de produtos em lojas de comércio eletrônico, os resultados experimentais mostraram que a expansão automática baseada em GP é uma alternativa efetiva para melhorar a qualidade dos resultados de um sistema de busca de imagens. Quando comparado a uma abordagem baseada somente em propriedades visuais, a expansão multimodal obteve ganhos de pelo menos 19% em todos os cenários de busca considerados. Quando comparado a uma abordagem similar, mas completamente ad hoc, o arcabouço baseado em GP obteve ganhos de até 54% em termos de MAP.