Classificação de bifurcações em imagens de tomografia de coerência óptica intravascular utilizando redes neurais e máquinas de vetores de suporte

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Porto, Carmina Dessana Nascimento
Outros Autores: http://lattes.cnpq.br/1290147905465560
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Amazonas
Faculdade de Tecnologia
Brasil
UFAM
Programa de Pós-graduação em Engenharia Elétrica
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://tede.ufam.edu.br/handle/tede/5833
Resumo: Estudos em tomografia de coerência óptica intravascular (IV-OCT) tem demonstrado a importância das regiões de bifurcação coronária na análise de imagens médicas intravasculares, uma vez que está região é mais propensa ao acúmulo de placas, o que pode levar a doença coronariana. Um exame IV-OCT comum adquire centenas de imagens, portanto, uma ferramenta automatizada para classificar as imagens como pertencentes ou não a região de bifurcações pode ser um passo importante para acelerar a análise de imagens IV-OCT e auxiliar métodos automatizados para a quantificação de placas ateroscleróticas. Neste trabalho, avaliamos o desempenho de dois classificadores, SVM e Redes Neurais, na tarefa de classificação de identificação de bifurcações em imagens IV-OCT. O estudo incluiu imagens IV-OCT de 9 pacientes. Para melhorar o desempenho da classificação, treinamos e testamos o SVM com diferentes parâmetros por meio de uma pesquisa de grade e diferentes critérios de parada foram aplicados ao classificador de Rede Neural: erro quadrático médio, parada precoce e regularização. Foram testados diferentes conjuntos de características, utilizando técnicas de seleção de características: PCA, LDA e seleção de características escalares com correlação. Treinamento e teste foram realizados em conjuntos com um máximo de 1460 imagens. Quantificamos nossos resultados em termos de taxa de falsos positivos, taxas de verdadeiro positivo, acurácia, especificidade, precisão, taxa de falsos alarmes, f-measure e área sob curva ROC. As redes neurais obtiveram a melhor precisão de classificação, 98,83%, superando os resultados encontrados na literatura. Nossos métodos parecem oferecer uma classificação robusta e confiável automatizada de imagens IV-OCT que podem ajudar médicos indicando potenciais imagens a serem analisadas. Métodos para melhorar a generalização das redes neurais aumentaram o desempenho da classificação.