Detectando comportamento automatizado nos tópicos de tendência do Twitter no Brasil

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Silva, Adeilson Souza da
Outros Autores: http://lattes.cnpq.br/7277627592187255
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Amazonas
Instituto de Computação
Brasil
UFAM
Programa de Pós-graduação em Informática
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://tede.ufam.edu.br/handle/tede/6930
Resumo: O crescimento no número de usuários fez com que as redes sociais, especialmente o Twitter, tornassem-se suscetíveis a criação e propagação de postagens automatizadas. No Twitter, a lista de tópicos de tendência representa os assuntos mais comentados em determinada região e pode ser utilizada indevidamente por contas automatizadas. É necessário então entender e estudar a forma como esses usuários se comportam a fim de criar medidas para combatê-los e garantir que os dados publicados possuam credibilidade. Utilizando uma base de dados real coletada dos tópicos de tendência do Twitter no Brasil, no período de dezembro de 2013 a junho de 2014, com 2.853.822 contas e 11.294.861 tweets, uma metodologia para detectar comportamento automatizado nos tópicos de tendência do Twitter foi proposta. Para tanto, foram estudadas diversas características de texto e do comportamento dos usuários para identificar atributos capazes de dis- tiguir usuários humanos de usuários automatizados. Também foram propostas seis (6) novas características extraídas do texto dos tweets baseadas no conceito de Entropia. Utilizando esse conjunto de atributos com algoritmos de aprendizagem de máquina supervisionada para classificação, foi possível detectar 92% das contas automatizadas na base de dados utilizada e, assim, obter uma visão do comportamento desses usuários.