Técnica aprimorada de segmentação não-supervisionada em imagens com felinos domésticos
Ano de defesa: | 2016 |
---|---|
Autor(a) principal: | |
Outros Autores: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal do Amazonas
Instituto de Computação Brasil UFAM Programa de Pós-graduação em Informática |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://tede.ufam.edu.br/handle/tede/5303 |
Resumo: | Muitos trabalhos atuais têm como foco principal a preservação da fauna e flora através do monitoramento e de pesquisas centradas em regiões com ecossistemas bem diversos, como é o caso da Amazônia. Pesquisas sobre monitoramento de animais sempre são realizadas em diversas partes do inundo. O problema principal deste tipo de monitoramento é que sua catalogação ainda é realizada de forma manual, consumindo o tempo dos pesquisadores que poderia ser melhor utilizado no alcance dos objetivos das pesquisas propriamente ditas. Na Austrália por exemplo, a falta de monitoramento em diversas espécies de felinos, principalmente gatos domésticos, preocupa cientistas devido a tornada de decisões errôneas por parte dos governos, que deseja combatê-los como se realmente fossem pragas. No Brasil, pesquisas similares são realizadas para prover a melhor conservação das espécies de felinos selvagens. Nesse contexto, o objetivo deste trabalho é de colaborar nessa área com o estudo de reconhecimento de padrões e processamento digital de imagens para a construção de um método mais eficaz de segmentação de um animal, em especial: o felino doméstico. O método consiste na criação de um processo combinado de um filtro de aumento de contraste Color Boost, filtro homomórfico, filtro Mean-Shift e do Mapa de distância para conseguir de forma não-supervisionada, segmentar o felino em uma cena. Além de conter uma regra para diminuir o processo de sobre segmentação em imagens, que é muito comum em segmentadores do tipo Watershed Os resultados conseguem alcançar até 84% em média de exatidão na extração do felino, tendo a possibilidade de no futuro ser extrapolado para outros objetos ou espécies. |