Técnica aprimorada de segmentação não-supervisionada em imagens com felinos domésticos

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Fontoura, Anderson Gadelha
Outros Autores: http://lattes.cnpq.br/5881182107404096
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Amazonas
Instituto de Computação
Brasil
UFAM
Programa de Pós-graduação em Informática
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://tede.ufam.edu.br/handle/tede/5303
Resumo: Muitos trabalhos atuais têm como foco principal a preservação da fauna e flora através do monitoramento e de pesquisas centradas em regiões com ecossistemas bem diversos, como é o caso da Amazônia. Pesquisas sobre monitoramento de animais sempre são realizadas em diversas partes do inundo. O problema principal deste tipo de monitoramento é que sua catalogação ainda é realizada de forma manual, consumindo o tempo dos pesquisadores que poderia ser melhor utilizado no alcance dos objetivos das pesquisas propriamente ditas. Na Austrália por exemplo, a falta de monitoramento em diversas espécies de felinos, principalmente gatos domésticos, preocupa cientistas devido a tornada de decisões errôneas por parte dos governos, que deseja combatê-los como se realmente fossem pragas. No Brasil, pesquisas similares são realizadas para prover a melhor conservação das espécies de felinos selvagens. Nesse contexto, o objetivo deste trabalho é de colaborar nessa área com o estudo de reconhecimento de padrões e processamento digital de imagens para a construção de um método mais eficaz de segmentação de um animal, em especial: o felino doméstico. O método consiste na criação de um processo combinado de um filtro de aumento de contraste Color Boost, filtro homomórfico, filtro Mean-Shift e do Mapa de distância para conseguir de forma não-supervisionada, segmentar o felino em uma cena. Além de conter uma regra para diminuir o processo de sobre segmentação em imagens, que é muito comum em segmentadores do tipo Watershed Os resultados conseguem alcançar até 84% em média de exatidão na extração do felino, tendo a possibilidade de no futuro ser extrapolado para outros objetos ou espécies.