Detecção de áreas desmatadas na porção sul do estado do amazonas, utilizando técnicas de extração de características e redes neurais artificiais

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Oliveira, Joel Parente de
Outros Autores: http://lattes.cnpq.br/9320149494252961
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Amazonas
Faculdade de Tecnologia
Brasil
UFAM
Programa de Pós-graduação em Engenharia Elétrica
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://tede.ufam.edu.br/handle/tede/5791
Resumo: A realização do monitoramento do desmatamento na Amazônia é um grande desafio devido, entre outros fatores, a enorme extensão territorial. Para facilitar esse trabalho, imagens geradas a partir de sistemas de sensoriamento remoto têm sido utilizadas para realizar a detecção de regiões desmatadas. Nesse sentido, desde 1988, Instituto Nacional de Pesquisas Espaciais realiza o monitoramento da Floresta Amazônica por meio de imagens ópticas LANDSAT adquiridas por meio de sistemas de sensoriamento remoto. Atualmente, a metodologia adotada pelo INPE tem por base realizar a demarcação das áreas desmatadas de forma manual baseado no conhecimento de especialistas. Porém, realizar esse trabalho de maneira manual, demanda tempo e grande esforço. Na literatura, podemos encontrar diversos trabalhos que propõem realizar uma classificação automática de imagens de sensoriamento remoto. Porém, com base na revisão realizada, os trabalhos propostos não utilizam métodos de generalização ou critérios objetivos para extração de características. Este trabalho propõe uma metodologia para o estudo de áreas de desmatamento utilizando imagens ópticas LANDSAT-8/OLI obtidas por sensoriamento remoto. É proposta a associação de métodos para melhorar a generalização das redes neurais, como a parada antecipada e regularização, com técnicas de extração de características, como seleção escalar, análise de componentes principais e análise de discriminante linear. O desempenho da metodologia é avaliado utilizando medidas como precisão, sensibilidade, especificidade, área sob curva ROC. Por fim, foram calculadas métricas de similaridade, Dice e Jaccard. Os melhores resultados foram obtidos com o método de generalização parada antecipada associado à técnica de análise discriminante linear. O estudo foi realizado em três regiões do Estado do Amazonas, localizadas nos munícipios de Apuí, Humaitá e Lábrea. Além disso, a metodologia proposta foi comparada com três trabalhos da literatura que também utilizaram imagens ópticas da região amazônica.