Estimativa dos componentes do balanço de radiação a partir de sensoriamento remoto, observação de superfície e redes neurais artificiais

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Zuluaga Aristizábal, Cristian Felipe
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Viçosa
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.locus.ufv.br/handle/123456789/9264
Resumo: Restingas são ecossistemas costeiros localizados no domínio da Mata Atlântica que hospedam uma grande diversidade de plantas, incluindo muitas espécies endêmicas. Atualmente, encontram-se altamente ameaçados devido à expansão da infraestrutura de transporte e desenvolvimento imobiliário. Para tomar medidas mitigatórias é necessário desenvolver estudos que permitam compreender o funcionamento deste ecossistema. Como parte deste esforço, o presente trabalho teve como objetivo estudar os componentes do balanço de radiação na restinga de Marambaia –RJ, obtidos a partir de medições em campo, sensoriamento remoto e redes neurais artificias. Os dados de campo foram coletados e avaliados no período de março de 2015 a fevereiro de 2016. Os resultados mostraram que a rede neural para calcular a radiação de onda longa atmosférica, foi mais eficiente que os modelos clássicos (r 2 > 0,83, RMSE < 6 W m -2 , MAE < 5 W m -2 e d > 0,94). No cálculo do balanço de radiação, a rede mostrou melhor desempenho para dias de céu claro (r 2 = 0,90, RMSE = 81,67 W m -2 , MAE = 64,96 W m -2 , d = 0,96) do que para dias de céu nublado (r 2 = 0,74, RMSE = 74,30 W m -2 , MAE = 40,51 W m -2 , e d = 0,83). Os resultados de sensoriamento remoto, mostraram uma subestimação no cálculo dos componentes do balanço de radiação. No entanto, no cálculo do ciclo diurno do balanço de radiação, este apresentou desempenho similar da rede neural artificial para dias de céu claro, r 2 = 0,93, RMSE = 85,81 W m -2 , MAE = 74,50 W m -2 , e d = 0,96. De modo geral, consideram-se ambas as metodologias como alternativas interessantes no esforço de calcular os componentes do balanço de radiação, a partir de um mínimo de variáveis meteorológicas ou para áreas sem nenhuma instrumentação.