Controle com lógica Fuzzy e Neurofuzzy aplicada à análise e programação de robôs móveis com visualização e simulação 3D

Detalhes bibliográficos
Ano de defesa: 2007
Autor(a) principal: Abicalil, Felipe Sertã
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade do Estado do Rio de Janeiro
Centro de Tecnologia e Ciências::Instituto Politécnico
BR
UERJ
Programa de Pós-Graduação em Modelagem Computacional
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.bdtd.uerj.br/handle/1/13770
Resumo: Este trabalho tem como objetivo o estudo de uma área da robótica chamada robótica móvel. Um robô móvel deve realizar uma navegação segura e esta é a principal motivação deste trabalho. Para tal foi desenvolvido um simulador de robótica móvel com visualização em 3D. Um dos grandes interesses na área de robótica móvel é a utilização de algoritmos de inteligência artificial. O objetivo deste trabalho é a utilização e simulação de inteligência artificial para o controle destinado ao desvio de obstáculos. As simulações são dinâmicas, ou seja, o robô não tem informação previa do cenário. Os algoritmos de inteligência artificial implementadas neste trabalho são lógica Fuzzy e Neurofuzzy. As contribuições do simulador são: a simulação e visualização em 3D com o cenário modelado em um programa CAD/3D, permite testar diversas configurações antes de testar o robô real, simula o ruído de sensores, utiliza lógica fuzzy e neurofuzzy para o desvio de obstáculos. Os resultados mostram a capacidade do sistema fuzzy para lidar com os dados ruidosos dos sensores assim como a influência das variáveis antecedentes e conseqüentes do sistema fuzzy de no comportamento do robô móvel para o desvio de obstáculos além da capacidade do sistema neurofuzzy de aprender a partir dos dados de treinamento mostrando uma melhoria no resultado das simulações.