Equações integrais via teoria de domínios: problemas direto e inverso

Detalhes bibliográficos
Ano de defesa: 2008
Autor(a) principal: Espósito Júnior, Antônio
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade do Estado do Rio de Janeiro
Centro de Tecnologia e Ciências::Instituto Politécnico
BR
UERJ
Programa de Pós-Graduação em Modelagem Computacional
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.bdtd.uerj.br/handle/1/13661
Resumo: Apresenta-se um estudo em Teoria de Domínios das equações integrais da forma geral f (x) = h(x)+g Z b(x) a(x) g(x, y, f (y))dy com h, a e b definidas para x ∈ [a0,b0], a0 ≤a(x)≤b(x)≤b0 e g definida para x, y ∈ [a0,b0], cujo lado direito define uma contração sobre o espaço métrico de funções reais contínuas limitadas. O ponto de partida desse trabalho é a reescrita da Análise Intervalar para Teoria de Domínios do problema de valor incial em equações diferenciais ordinárias que possuem solução como ponto fixo do operador de Picard. Com o conjunto dos números reais interpretados pelo Domínio Intervalar, as funções reais são estendidas para operarem no domínio de funçoes intervalares de variável real. Em particular, faz-se a extensão canônica do campo vetorial em relação à segunda variável. Nesse contexto, pela primeira vez tem-se o estudo das equações integrais de Fredholm e Volterra sobre o domínio de funções intervalares de variável real definida pelo operador integral intervalar com a participação da extensão canônica de g em relação à terceira variável. Adicionando ao domínio de funções intervalares sua função medição, efetua-se a análise da convergência do operador intervalar de Fredholm e Volterra em Teoria de Domínios com o cálculo da sua derivada informática em relação à medição no seu ponto fixo. Com a representação das funções intervalares em função passo constante a partir da partição do intervalo [a0,b0], reescrevese o algoritmo da Análise Intervalar em Teoria de Domínios com a introdução do cálculo da aproximação da extensão canônica de g e com o comprimento do intervalo da partição tendendo para zero. Estende-se essa abordagem mais completa do estudo das equações integrais na resolução de problemas de valores iniciais e valor de contorno em equações diferenciais ordinárias e parciais. Uma vez que para uma pequena variação do campo vetorial v ou do valor inicial y0 da equação diferencial f ′(x) = v(x, f (x)) com a condição inicial f (x0) = y0, pode-se ter uma solução tão próxima da solução f da equação quanto possível, formaliza-se pela primeira vez em Teoria de Domínios um algoritmo na resolução do problema inverso em que, conhecendo a função f , determina-se uma equação diferencial ordinária com o cálculo de um campo vetorial v tal que o operador de Picard associado mapeia f tão próxima quanto possível a ela mesma.