Detecção de anomalias em vídeos com multidão utilizando colônia de bactérias artificiais

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Costa, Joelmir Ramos da
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade do Estado do Rio de Janeiro
Centro de Tecnologia e Ciências::Faculdade de Engenharia
BR
UERJ
Programa de Pós-Graduação em Engenharia Eletrônica
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.bdtd.uerj.br/handle/1/11855
Resumo: Em um mundo cada vez mais populoso, em que grandes quantidades de pessoas se aglomeram em espaços públicos diariamente, a compreensão e previsão do comportamento humano em multidões são essenciais para manter a segurança dos indivíduos. Atualmente, com o aumento constante do número de câmeras de vigilância espalhadas por todo o mundo, a análise da atividade humana em larga escala tornou-se possível. No entanto, o volume de dados a ser analisado e classificado, além do custo computacional envolvido no processo, tornam o desenvolvimento de sistemas de detecção de eventos precisos em tempo real um grande desafio. Nesta dissertação, desenvolve-se um sistema de detecção de eventos em vídeos com multidão, que possibilita aplicações em tempo real. O sistema proposto neste trabalho avalia o tempo de processamento de 3 métodos distintos de extração de movimento entre frames e de um algoritmo de otimização inspirado em colônias de bactérias, que recobre com bactérias artificiais as regiões de interesse das camadas contendo movimento. Por último, utiliza-se redes neurais de Kohonen para classificar os padrões de comportamento das colônias que emergem durante a otimização. Com base no método proposto, foram avaliados dois consagrados datasets na análise de eventos em vídeos de curta duração, contendo multidões de média e alta densidade: UMN e PETS 2009. Avaliou-se também um vídeo de vigilância de longa duração com imagens do tráfego de veículos em uma avenida. Todas as simulações foram realizadas no MATLABr. O desempenho dos métodos de extração de movimento foi avaliado de acordo com o tempo de processamento por par de frames. O desempenho do algoritmo CBA é mensurado pelo tempo de processamento e pela quantidade de bactérias iniciais na camada de movimento, e a qualidade do classificador é comparada com o estado da arte de outros sistemas de detecção de eventos em vídeos, através da área sob a curva ROC, tendo apresentado resultados semelhantes, porém com baixo custo computacional e possibilidades de aplicação em tempo real. Os resultados das simulações e dos experimentos demonstram a eficácia e eficiência do sistema proposto.