Using compound parabolic concentrating solar collector in asphalt industry.
Ano de defesa: | 2015 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
Universidade do Estado do Rio de Janeiro
Centro de Tecnologia e Ciências::Faculdade de Engenharia BR UERJ Programa de Pós-Graduação em Engenharia Mecânica |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://www.bdtd.uerj.br/handle/1/11717 |
Resumo: | This dissertation presents thermal, economic and environmental evaluation of a solar heating system (SHS) which is used in an asphalt plant from computational simulation with TRNSYS. The process chosen is the bitumen heating from the storage up to the mixing temperature, using mineral oil as heat transfer fluid (HTF). The system components are the HTF-bitumen heat exchanger, the compound parabolic concentration solar collector (CPC), the auxiliary heater and the circulation pump. The TRNSYS simulation computes the mass and energy balances in the HTF closed loop every hour. Rio de Janeiro typical meteorological year (TMY) hourly weather data was used in order to perform this paper. In many instances, HTF temperature has reached a temperature that more than 238°C, showing that the CPC is suitable for this application. Fuel savings and avoided emissions were taken into account for economic and environmental analysis. In this work describes the renewable energy sources, the asphalt plant and bitumen heater types. It also shows the Brazilian portion of the some of these sources. The results, though, made it possible to address environmentally sound public policies to encourage solar energy use in the Asphalt Industry. Moreover, it will help in reducing the high emission of the green house gases from the use of the fossil fuels in this industry. |