Análise de sentimentos usando redes neurais de convolução

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Santos, Igor Pedro Pinto dos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade do Estado do Rio de Janeiro
Centro de Tecnologia e Ciências::Faculdade de Engenharia
BR
UERJ
Programa de Pós-Graduação em Engenharia Eletrônica
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.bdtd.uerj.br/handle/1/11853
Resumo: As redes de neurais de convolução são conhecidas por seu ótimo desempenho em visão computacional, alcançando resultados no estado da arte. No entanto, trabalhos recentes mostraram que estas redes podem funcionar também para processamento de linguagem natural. Neste caso, a ideia básica consiste em concatenar as representações vetoriais das palavras em um único bloco e usá-lo como imagem. Contudo, apesar dos bons resultados, o problema de redes de convolução é o grande números de decisões de projeto que precisam ser tomadas. Estes modelos exigem a definição de muitos hiperparâmetros, incluindo o tipo word embeddings que consiste na representação vetorial dos dados, a função de ativação que introduz não-linearidade ao modelo, o tamanho do filtro que aplica convolução aos dados, o número demapas de características que são responsáveis por identificar os atributos, o método de pooling usado na condensação dos dados, além da constante de regularização e a taxa de dropout que são responsáveis por evitar o sobreajuste da rede. Em trabalhos existentes, foram apresentadas arquiteturas de redes neurais de convolução capazes de superar o desempenho de modelos tradicionais de aprendizado de máquinas, competindo com modelos mais complexos. Todavia, não foi explorado como as diferentes possibilidades de hiperparâmetros podem afetar o desempenho deste tipo de rede. Nesta dissertação, o objetivo consiste em criar um classificador de análise de sentimentos eficiente usando redes neurais de convolução por meio da análise do impacto de seus hiperparâmetros no desempenho do modelo. O interesse por análise de sentimentos vem do advento das mídias sociais e dos avanços tecnológicos que inundam a Internet com opiniões. Os resultados encontrados foram obtidos com o uso de GPU e mostram que as diferentes configurações superam os modelos de referência em sua grande maioria com ganhos de até 18% e possuem desempenho semelhante aos modelos no estado da arte com ganhos de até 2% em alguns casos.