SIMULACAO DA ESTRUTURA MOLECULAR E ELETRÔNICA DE POLIMEROS CONDUTORES

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Andrade, Ageo Meier de lattes
Orientador(a): Lazaro, Sérgio Ricardo de lattes
Banca de defesa: Lavarda, Francisco Carlos lattes, Fiorin, Barbara Celânia lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: UNIVERSIDADE ESTADUAL DE PONTA GROSSA
Programa de Pós-Graduação: Programa de Pós-Graduação em Química Aplicada
Departamento: Química
País: BR
Palavras-chave em Português:
PM6
PM7
RM1
DFT
Palavras-chave em Inglês:
PM6
PM7
RM1
DFT
Área do conhecimento CNPq:
Link de acesso: http://tede2.uepg.br/jspui/handle/prefix/2045
Resumo: The search for materials with conductive capacity has been gaining attention in the scienti c community for its many technological applications. Moreover, understanding the charge transport phenomena in these materials it is still seen as a challenge to the scientic community. Poly (3,4-ethylenedioxythiophene), PEDOT features desirable characteristics where planar molecular structure ensures process of charge transfer and charge separation. In the investigation of these properties, computational tools emerge as an alternative with low nancial cost when compared to experimental techniques. Knowing that several semi-empirical methodologiess are available and the class of conductive polymers exhibit unique macromolecular characteristics; the objective of this study was to investigate the structural properties of 1-EDOT to 10-EDOT by the latest methodologies available in MOPAC2012 program, that is, PM6, PM7 and RM1. It was found that among them, PM6 methodology provided good results, especially for presenting the planar polymer chain to oligomers of 2-EDOT to 10-EDOT. DFT calculations have been used for organic polymeric systems with conductive characteristics and has evolved as a major computational tools for electronic properties. Thus, for 1-EDOT to 10-EDOT optimized by PM6 methodology, single point calculations were applied using DFT B3LYP/6-31++G(d,p) obtaining information related to the charge transport, especially reducing band-gap energy, border orbital location and formation of an intramolecular charge hall. From these informations, were investigated electrostatic potential map and Density of States (DOS) based on energy levels. In computational analysis of excited states, calculations based on TDDFT using B3LYP/6-31+G were applied to molecular systems, where it was possible to investigate discrete levels of excitation energy in the UV-visible range. In small oligomers of 1-EDOT to 6-EDOT using PM6 optimized structures such calculations showed the possibility of investigating the main configuration related to discrete levels, showing the reduction in energy required for excitation with increasing polymer chain for this material. Having noted both the reduction of energy band-gap and the singlet excitation energy, relatedto increasing polymeric chain, it was investigated these properties for a macromolecular system considering infinite oligomers. In this analysis, linear regression applied to the results of 2-EDOT to 6-EDOT had the lowest band-gap energy. Subsequently, band-gap energy was related to the wavelength of maximum absorption of the singlet excitation energy. It was concluded that it is possible to apply semi-empirical calculations followed by single-pint DFT and TDDFT calculations in the investigation of conductive properties of polymeric materials providing significant results to understand charge transport and the prediction of structural and electronic properties.