Adaptação bacteriana: plasticidade fenotípica de Pantoea ananatis CCT 7673 exposta ao herbicida mesotrione

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Prione, Lilian Parra lattes
Orientador(a): Pileggi, Marcos lattes
Banca de defesa: Ribeiro, Manuella Nóbrega Dourado lattes, Demiate, Ivo Mottin lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: UNIVERSIDADE ESTADUAL DE PONTA GROSSA
Programa de Pós-Graduação: Programa de Pós-Graduação em Ciências Biológicas
Departamento: Biologia Evolutiva
País: BR
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://tede2.uepg.br/jspui/handle/prefix/979
Resumo: Herbicides are widely used to increase crop production and account for 35% of all agrochemicals applied annually. After application, the herbicides can remain in the soil as hazardous residues. Mesotrione, (2-[4-methylsulfonyl-2-nitrobenzoyl]1,3-cyclohenanedione), is the active ingredient of Callisto, an herbicide commonly used in corn. Pantoea ananatis CCT 7673, an Enterobacteria isolated from water, has been previously cited as mesotrione-degrading strain. The aim of this study was to evaluate the influence of mesotrione and Callisto as oxidative stress-inducing agents for cellular metabolism of Pantoea ananatis CCT7673 and identify possible mechanisms of tolerance. SOD, CAT and GR activities were evaluated in non-denaturing PAGE and CAT, GR and GST in spectrophotometer. Also, the rates of malonaldehyde (MDA), superoxid and peroxide hydrogen (H2O2) were measured in a spectrophotometer. Minimal medium with no herbicide (MM) was used as control. Lipid peroxidation, superoxide and peroxide hydrogen quantification and SOD, CAT, GR and GST activities were analyzed before and after degradation of mesotrione. The herbicide proved to be the cause of oxidative stress, according to peroxide hydrogen data. Unexpectedly, the rates of lipid peroxidation (MDA) and GR showed to be lower in the presence of the herbicide when compared to the control, with no changes in bacterial growth. The activity of GST was higher in mesotrione treatment in comparison to control and Callisto, during and after degradation. These results suggest that this enzyme may be related to the mesotrione degradation, probably by cometabolism. The rates of lipid peroxidation were shown to be lower in the presence of the herbicide compared to the control, with no changes in growth rates when exposed to herbicide. P. ananatis CCT 7673 showed changes in the saturation of membrane lipids. These changes may interfere with herbicide entry into the cell. These characteristics may be associated with a level of phenotypic plasticity in P. ananatis CCT 7673, making this an interesting bacterium for studies of herbicide tolerance and evolution of microbiota in environments subjected to different degrees of selective pressure model.