SÍNTESE, CARACTERIZAÇÃO DO [Ru(6-p-cimeno)(ampy)Cl]+ E POTENCIAL APLICAÇÃO EM ELETRODO DE CARBONO CERÂMICO

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Machado, Silvane lattes
Orientador(a): Wohnrath, Karen lattes
Banca de defesa: Pessoa, Christiana Andrade lattes, Castro, Eryza Guimarães de lattes, Araujo, Marcio Peres de lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: UNIVERSIDADE ESTADUAL DE PONTA GROSSA
Programa de Pós-Graduação: Programa de Pós-Graduação em Química Aplicada
Departamento: Química
País: BR
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://tede2.uepg.br/jspui/handle/prefix/2049
Resumo: In this work the ruthenium arene complex of general formula [Ru(6-p-cymene)(ampy)Cl]+ (Ru-ampy) containing the 2-aminomethylpiridine ligand was obtained from the cleavage of the chloride bridges of the [Ru(6-p-cimeno)(-Cl)Cl]2 complex. The structure of the Ru-ampy was elucidated by X-ray diffraction, which was compared to the optimized structure DFT theoretical level and there was distinct values of length of Ru-N bond, proving that Ru is coordinated to the ampy ligand by atom of nitrogen N-pyridine ring as the amine nitrogen atom. Experimental electronic spectra, and the theoretical spectra obtained by TDDFT method performed in various solvents showed a small displacement of the bands due to the solvation caused by the nature of the solvent to the complex. From the composition analysis of the orbital, bands observed at 320 and 450 nm were attributed to metal charge transfer transitions to the ligand. In the vibrational spectra observed a shift of the bands of ampy and arene ligands for smaller wavenumber values when they are coordinated to pyridine complex, which results corroborated with the NMR 1H results where there was an increase in shielding of the hydrogen of the p-cymene of the complex Ru-ampy compared with the proton of the precursor. In the electrochemical behavior of Ru-ampy obtained by cyclic voltammetry in CH3CN it was found that a chemical step occurs with the arene labilization and replacement of the solvent after the oxidation of [Ru(6-p-cimeno)(ampy)Cl]+ to [Ru(6-p-cimeno)(ampy)Cl]2+ at 1.5 V, forming the species [Ru(CH3CN)3(ampy)Cl]2+. In order to explore the electrochemical potentiality of Ru-ampy, this was used as a ceramic carbon electrode modifier (CCE-Ru). The cyclic voltammogram of CCE-Ru in Britton-Robinson buffer (pH 7.0) showed only an almost reversible process with oxidation and reduction peaks at 0.39 and 0.35 V vs. Ag/AgCl, respectively, characterized by diffusion process on the electrode surface. With instrumental parameters square wave voltammetry (SWV) optimized (f = 20 s-1, a = 80 mV, ΔEs= 1 mV) analytical curves were constructed in the presence of paracetamol in the concentration intervals 1.99x10-6 - 3.10 x10-5 mol L-1 (R = 0.997), the values detection limit and quantification limit obtained, 1.94 x 10-6 and 5.83 x 10-7mol L-1 respectively are similar to electrodes reported in literature. The proposed method was successfully applied to determination of paracetamol in commercial pharmaceutical formulations (tablets and oral solution), the obtained results are in good agreement with the standard UV-Vis method at a 95% confidence level.