Modelo Probabilístico Bayesiano para Simular o Conhecimento de Especialistas no Controle da Ferrugem Asiática da Soja no Estado do Paraná

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Figueiredo, Gregory Vinícius Conor lattes
Orientador(a): Canteri, Marcelo Giovanetti lattes
Banca de defesa: Guimarães, Alaine Margarete lattes, França, José Alexandre lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: UNIVERSIDADE ESTADUAL DE PONTA GROSSA
Programa de Pós-Graduação: Programa de Pós Graduação Computação Aplicada
Departamento: Computação para Tecnologias em Agricultura
País: BR
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://tede2.uepg.br/jspui/handle/prefix/177
Resumo: The Asian rust is the main pathology of soybean culture, what makes it the object of several expert systems. This work aimed to build a probabilistic model to estimate the need and number of fungicide applications to control soybean Asian rust in Paraná using the Bayesian network formalism and knowledge engineering. The model engineering was accomplished by interviews with experts and also by the literature review, what produced a Bayesian network built with the aid of software GeNIe 2.0, where the variables, graph structure and conditional probability table of each variable were defined, what determined the influences between them. The tests made to evaluate the model were accompanied by two interviewed experts, who approved the model through proposed test cases. The results presented showed that the developed model rigorously represent the knowledge of the expert who accompanied its development, presenting common consensus among the other interviewed experts for the first fungicide application but diverging for the extra ones.