Computação paralela para reduzir o tempo de resposta da mineração de dados agrícolas

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Abreu, Cristian Cosmoski Rangel de lattes
Orientador(a): Senger, Luciano José lattes
Banca de defesa: Vaz, Maria Salete Marcon Gomes lattes, Góis, Lourival Aparecido de lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: UNIVERSIDADE ESTADUAL DE PONTA GROSSA
Programa de Pós-Graduação: Programa de Pós Graduação Computação Aplicada
Departamento: Computação para Tecnologias em Agricultura
País: BR
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://tede2.uepg.br/jspui/handle/prefix/162
Resumo: The objective of this study was investigate the use of parallel computing to reduce the response time of data mining in agriculture. For this purpose, a tool, called Fast Weka been defined and implemented. This tool allows running data mining algorithms and explore parallelism in multi-core computers with the use of threads and distributed systems employing peer-to-peer networks. The exploration of parallelism occurs through the data parallelism inherent to the process of cross-validation (folds). The tool was evaluated through experiments using artificial neural networks data mining algorithms applied to a data set of forest cover types. The multi-thread computing and computing on peer-to-peer networks allowed to reduce the response time of data mining activities. The best results were achieved when employed a multiple number of threads or pairs in the number of folds of cross validation. It was observed and efficiency of 87% when used 4 threads to 24 folds and 86% efficiency also in peer-to-peer networks using 24 folds with 11 pairs.