Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
RIBEIRO, Evelaine Berger
 |
Orientador(a): |
Ribeiro, Selma Regina Aranha
 |
Banca de defesa: |
Guimarães, Alaine Margarete,
Vaz, Maria Salete Marcon Gomes,
Bertotti, Luiz Gilberto |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual de Ponta Grossa
|
Programa de Pós-Graduação: |
Programa de Pós Graduação Computação Aplicada
|
Departamento: |
Departamento de Informática
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://tede2.uepg.br/jspui/handle/prefix/2327
|
Resumo: |
Com as informações adquiridas das imagens capturadas pelo Sensoriamento Remoto e das técnicas disponíveis nos Sistemas de Informação Geográfica pode-se gerar mapeamentos temáticos para uso e cobertura do solo. Para isso, é realizada a classificação de imagens para definir as classes de interesse. Essa classificação pode ser feita pixel a pixel ou por regiões. Em imagens de alta resolução, como a Rapideye, é indicada a classificação por regiões. Esse método considera as informações do pixel e sua vizinhança, agrupando pixels com características semelhantes, formando as regiões. Portanto, recomenda-se aplicar o método da segmentação pela GEOBIA, que segmenta a imagem em regiões, visando extrair características espaciais, espectrais e de textura. Como resultado desse método, têm-se o vetor de regiões e o banco de dados relacional com os atributos (espaciais, espectrais e de textura). O presente trabalho teve como objetivo obter a classificação do uso e cobertura do solo da imagem Rapideye com banco de dados NoSQL orientado a grafos para análise dos atributos extraídos mediante a GEOBIA. A metodologia desenvolvida utilizou a Análise Multivariada para analisar os atributos resultantes da segmentação. Por meio do dendrograma foi possível a separação dos grupos de atributos (espaciais, espectrais e de textura), que foram utilizados para as consultas de busca por agrupamentos de regiões com características semelhantes no grafo formado pelo banco de dados NoSQL. As regiões foram classificadas de acordo com as classes de interesse definidas no processo de fotointerpretação, gerando a imagem classificada. Para validar o resultado, realizou-se a classificação da imagem da área de estudo pelos algoritmos Distância Mínima, Máxima Verossimilhança e KNN e a matriz de confusão. O algoritmo KNN apresentou melhor classificação, com índice kappa de 0,77 e então foi utilizada para comparação com a imagem classificada pelo banco de dados NoSQL, por meio da tabulação cruzada. O cruzamento dos dados mostrou que a imagem classificada pelo banco de dados NoSQL obteve resultados positivos. Conclui-se que a pesquisa alcançou os objetivos propostos apresentando resultados satisfatórios para o método desenvolvido para classificação do uso e cobertura do solo. |