Estabilidade orbital de ondas viajantes periódicas para equações do tipo Korteweg-de Vries e dispersiva regularizada

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Fabrício Cristófani
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Brasil
Departamento de Matemática
Programa de Pós-Graduação em Matemática
UEM
Maringá, PR
Centro de Ciências Exatas
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.uem.br:8080/jspui/handle/1/5533
Resumo: This thesis concerns the study of orbital stability of periodic traveling waves related for three important nonlinear dispersive equations. Initially, we study the orbital stability with dnoidal pro_le associated to the Kwahara equation based on the arguments developed in [7] and [13]. After, motivated by [28], we determine a global well-posedness result as well as the orbital stability of periodic waves related to the logarithmic Korteweg-de Vries equation. To do so, we have presented a smooth surface of periodic waves by using an improvement of the theory in [63]. The same work was used to establish the spectral properties of the linearized operator around the periodic wave. Next, an adaptation of the stablity theories developed in [45], [54] and [79] were presented to get our stability results. Final, we showed a new criterion to obtain the orbital stability of periodic traveling waves related to a general class of regularized dispersive equations. The study is based on the recent ideas from [6] and it has, as a direct application of our method, the fact that a special class of regularized fractionary Korteweg-de Vries equations always admit stable periodic waves