Estabilidade orbital de ondas viajantes periódicas para equações do tipo Korteweg-de Vries e dispersiva regularizada
Ano de defesa: | 2018 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Brasil
Departamento de Matemática Programa de Pós-Graduação em Matemática UEM Maringá, PR Centro de Ciências Exatas |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://repositorio.uem.br:8080/jspui/handle/1/5533 |
Resumo: | This thesis concerns the study of orbital stability of periodic traveling waves related for three important nonlinear dispersive equations. Initially, we study the orbital stability with dnoidal pro_le associated to the Kwahara equation based on the arguments developed in [7] and [13]. After, motivated by [28], we determine a global well-posedness result as well as the orbital stability of periodic waves related to the logarithmic Korteweg-de Vries equation. To do so, we have presented a smooth surface of periodic waves by using an improvement of the theory in [63]. The same work was used to establish the spectral properties of the linearized operator around the periodic wave. Next, an adaptation of the stablity theories developed in [45], [54] and [79] were presented to get our stability results. Final, we showed a new criterion to obtain the orbital stability of periodic traveling waves related to a general class of regularized dispersive equations. The study is based on the recent ideas from [6] and it has, as a direct application of our method, the fact that a special class of regularized fractionary Korteweg-de Vries equations always admit stable periodic waves |