Classificação de espécies de pássaros utilizando descritores de características visuais e acústicas

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Lucio, Diego Rafael
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual de Maringá
Brasil
Departamento de Informática
Programa de Pós-Graduação em Ciência da Computação
UEM
Maringá, PR
Centro de Tecnologia
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.uem.br:8080/jspui/handle/1/2500
Resumo: This work aims at presenting a system for automatic bird species classification based on acoustic and visual features extracted from the birdsong. The texture features were extracted using: Local Binary Pattern (LBP), Local Phase Quantization (LPQ), Robust Local Binary Pattern (RLBP) Gray-Scale Level Co- currence Matrix (GLCM) and Gabor filters. The acoustic characteristics are in turn extracted through the descriptors: Rhythm Histogarm (RH), Rhythm Patterns (RP) and Statistical Spectrum Descriptor (SSD.) Aiming to perform more fare comparisons, the experiments performed were made over a similar database used in the work Automatic Bird Species Identification for Large Number of Species (Lopes et al., 2011a). In the classification step, SVM classifier was used and the final results were taken by using 10-fold cross validation.