Detalhes bibliográficos
Ano de defesa: |
2024 |
Autor(a) principal: |
Mendes, Gizelli Renata |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.uel.br/handle/123456789/15391
|
Resumo: |
Resumo: Neste trabalho exploramos o estudo de métodos de otimização não linear na determinação de solução numérica para uma equação diferencial de segunda ordem com múltiplos pontos de fronteira, em geral este problema é solucionado utilizando métodos baseados no teorema de ponto ?xo de Banach ver [2] O uso de métodos de otimização não linear mostrou-se vantajoso por permitir uma analise qualitativa dos problemas, além de não depender de que o operador integral seja uma contração na vizinhança da solução Deste modo apresentamos duas abordagens baseadas em métodos de otimização não linear para o problema na primeira analisamos uma estratégia baseada no método de Gauss-Newton com a equação discretizada, na segunda além da equação discretizada utilizamos como nos métodos baseados no teorema de Banach a equação integral associada a equação diferencial e aplicamos um método de otimização não linear com restrições |