Detalhes bibliográficos
Ano de defesa: |
2012 |
Autor(a) principal: |
Prants, Willian Tiago |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.udesc.br/handle/UDESC/12595
|
Resumo: |
Neste trabalho analisamos a dinâmica de dois modelos a tempo contínuo: (i) o modelo de Rössler, um modelo para o sistema de Lorenz, composto pelo conjunto de três equações diferenciais, de primeira ordem, autônomo e que apresenta apenas uma não-linearidade e (ii) o modelo de dois osciladores caóticos de Rössler acoplados, construído pelo acoplamento linear entre dois sistemas de Rössler e controlado por dois parâmetros de acoplamento ? e ?, que correspondem a intensidade e simetria de acoplamento. Para o primeiro modelo, encontramos analiticamente os pontos de equilíbrio e analisamos, através do método de Routh-Hurwitz, suas estabilidades. Construímos numericamente os espaços de parâmetros a × b, a × c e c × b identificando as regiões de regime caótico e detectamos estruturas periódicas típicas imersas nessas regiões. Para o segundo modelo, construímos numericamente o espaço de parâmetros para os parâmetros de acoplamento ? e ?, e encontramos uma região periódica imersa em caos, caracterizando o efeito de supressão de caos. Analisando o segundo maior expoente de Lyapunov detectamos uma larga região hipercaótica. Para ambos os modelos usamos diagramas de bifurcação para analisar as estruturas periódicas e determinar as rotas para o caos |