Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
Santos, Juliana Vicente dos |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.udesc.br/handle/UDESC/12720
|
Resumo: |
O modelo de Fitzhugh-Nagumo é composto originalmente por um sistema de duas equações diferenciais não-lineares, que simulam o comportamento de condução do impulso nervoso através da membrana neural. Neste trabalho estudamos numericamente o comportamento dinâmico de redes de neurônios acoplados, modeladas pelas equações de Fitzhugh-Nagumo. Consideramos redes de dois, três e quatro neurônios acoplados unidirecionalmente e bidirecionalmente, para as quais foram construídos espaços de parâmetros dos expoentes de Lyapunov, diagramas isoperíodos e diagramas de bifurcação. Nos espaços de parâmetros e diagramas isoperiódicos investigamos a dinâmica da variação entre a intensidade de acoplamento dos sistemas de neurônios e um outro parâmetros quaisquer do sistema, calculando o espectro de Lyapunov e os máximos locais de uma variável, respectivamente. Os resultados evidenciaram a existência de estruturas auto-similares arranjadas sequencialmente em cascatas de bifurcação por adição de período imersas em regiões caóticas. Internamente, as estruturas periódicas exibem cascatas de bifurcações por dobramento de período. No caso do modelo para dois neurônios acoplados unidirecionalmente existe a formação de estruturas periódicas em camada, arranjadas em cascatas de bifurcação por adição de período. Finalmente mostramos que, para as redes de três e quatro neurônios, existe a ocorrência de regiões de hipercaos na dinâmica dos sistemas. |