Aplicação de redes neurais no apoio à tomada de decisão para a aprovação de componentes estruturais mecânicos

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Marcon, Lucas
Orientador(a): Corso, Leandro Luís, Vieceli, Alexandre
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: https://repositorio.ucs.br/11338/10275
Resumo: O Método de Elementos Finitos (MEF) é um recurso de cálculo virtual utilizado no mundo todo para determinar soluções aproximadas para problemas numéricos de engenharia. É comum que uma análise realizada pelo MEF se delongue de acordo com a sua complexidade, tornando um projeto caro e prolongado. Diante deste cenário, o presente trabalho buscou desenvolver uma Rede Neural Artificial (RNA) capaz de prever respostas de elementos finitos e vida sob fadiga para uma aranha de freio, como ferramenta de apoio na tomada de decisão em tempo real para validação estrutural de componentes mecânicos. Para isso, um modelo virtual numérico foi calibrado pelo MEF com base em teorias da mecânica, resultados obtidos de testes de bancada e instrumentações. Embasado por meio da calibração virtual, um banco de dados de elementos finitos foi gerado para aplicação da RNA, contendo 130 dados de um total de 4.800 combinações. O treinamento, validação e teste da RNA foi determinado por meio de um algoritmo de análise de desempenho da RNA. Por fim, os resultados obtidos com a RNA foram comparados com os resultados de elementos finitos e vida sob fadiga computacional, a eficiência do método de predição de respostas em tempo real foi mensurada por meio do Mean Squared Error (MSE). [resumo fornecido pelo autor]