Detalhes bibliográficos
Ano de defesa: |
2009 |
Autor(a) principal: |
Rodrigues, Fabiene Silva |
Orientador(a): |
Milan, Luis Aparecido |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de São Carlos
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Estatística - PPGEs
|
Departamento: |
Não Informado pela instituição
|
País: |
BR
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.ufscar.br/handle/20.500.14289/4537
|
Resumo: |
The clustering techniques have frequently been used in literature to the analyse data in several fields of application. The main objective of this work is to study such techniques. There is a large number of clustering techniques in literature. In this work we concentrate on Self Organizing Map (SOM), k-means, k-medoids and Expectation- Maximization (EM) algorithms. These algorithms are applied to gene expression data. The analisys of gene expression, among other possibilities, identifies which genes are differently expressed in synthesis of proteins associated to normal and sick tissues. The purpose is to do a comparing of these metods, sticking out advantages and disadvantages of such. The metods were tested for simulation and after we apply them to a real data set. |