Métodos de agrupamento na análise de dados de expressão gênica

Detalhes bibliográficos
Ano de defesa: 2009
Autor(a) principal: Rodrigues, Fabiene Silva
Orientador(a): Milan, Luis Aparecido
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Estatística - PPGEs
Departamento: Não Informado pela instituição
País: BR
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/4537
Resumo: The clustering techniques have frequently been used in literature to the analyse data in several fields of application. The main objective of this work is to study such techniques. There is a large number of clustering techniques in literature. In this work we concentrate on Self Organizing Map (SOM), k-means, k-medoids and Expectation- Maximization (EM) algorithms. These algorithms are applied to gene expression data. The analisys of gene expression, among other possibilities, identifies which genes are differently expressed in synthesis of proteins associated to normal and sick tissues. The purpose is to do a comparing of these metods, sticking out advantages and disadvantages of such. The metods were tested for simulation and after we apply them to a real data set.