Detalhes bibliográficos
Ano de defesa: |
2012 |
Autor(a) principal: |
Inforzato, Caio Carlevaro |
Orientador(a): |
Ramos, Adriana
![lattes](/bdtd/themes/bdtd/images/lattes.gif?_=1676566308) |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de São Carlos
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Matemática - PPGM
|
Departamento: |
Não Informado pela instituição
|
País: |
BR
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.ufscar.br/handle/ufscar/5885
|
Resumo: |
We present an introductory study of smooth manifolds, bundles and Stiefel- Whitney classes (of real vector bundles). We explained that, given a certain smooth m-dimensional manifold, the Stiefel- Whitney classes of its tangent bundle can be used to ensure that such a manifold does not immerse (smoothly) in certain Euclidean spaces Rj . In this sense, we consider the Grassmann manifold G2;n of the 2-subspaces of Rn+2, and we carry out a detailed study of the following non-immersion theorem, proved by V. Oproiu [Proceedings of the Edinburgh Mathematical Society, 1977]: "Let n > 1 be a natural number and consider s = 2r such that s _ 2n < 2s. If n = s - 1, then G2;n does not immerse in R2s-3; if n = s - 1, then G2;n does not immerse in R3s-3." |