Classes de Stiefel-Whitney

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Castelo Branco Júnior, José Leôncio
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal da Paraíba
Brasil
Matemática
Programa de Pós-Graduação em Matemática
UFPB
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpb.br/jspui/handle/123456789/18958
Resumo: In this work we study the Stiefel-Whitney classes of a real smooth varieties. These classes allow us to identify trivial bundles. The motivation and geometric definition of this object are given by means of the cochain obstruction, later they are presented in the axiomatic way. Assuming the existence and uniqueness of such classes satisfing these axioms, we will see some results as Whitney’s Duality Theorem which relates the classes of the tangent bundle with the normal bundle, and Stiefel’s Theorem that allows us to conclude when a real projective space is parallelizable. Finally, we will see the application of this tool in the study of cobordant manifolds.