Aprendizado semissupervisionado através de técnicas de acoplamento

Detalhes bibliográficos
Ano de defesa: 2011
Autor(a) principal: Duarte, Maisa Cristina
Orientador(a): Hruschka Júnior, Estevam Rafael lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Ciência da Computação - PPGCC
Departamento: Não Informado pela instituição
País: BR
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/474
Resumo: Machine Learning (ML) can be seen as research area within the Artificial Intelligence (AI) that aims to develop computer programs that can evolve with new experiences. The main ML purpose is the search for methods and techniques that enable the computer system improve its performance autonomously using information learned through its use. This feature can be considered the fundamental mechanisms of the processes of automatic learning. The main goal in this research project was to investigate, propose and implement methods and algorithms to allow the construction of a continuous learning system capable of extracting knowledge from the Web in Portuguese, throughout the creation of a knowledge base which can be constantly updated as new knowledge is extracted.