Invariantes de singularidades em característica positiva
Ano de defesa: | 2020 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de São Carlos
Câmpus São Carlos |
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Matemática - PPGM
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Palavras-chave em Inglês: | |
Área do conhecimento CNPq: | |
Link de acesso: | https://repositorio.ufscar.br/handle/ufscar/12778 |
Resumo: | This dissertation mainly follows the works of \cite{Gr2} and \cite{Gr5}. Considering $\mathbb{K}$ a field, algebraically closed with positive characteristic, we presented invariants of singularities in $\mathbb{K}[[\underline{x}]],$ the local $\mathbb{K}$- algebra of the formal power series, such as Milnor and Tjurina numbers. Two equivalence relations are defined on $\mathbb{K}[[\underline{x}]]$, right equivalence and contact equivalence. The concept of finite determinancy of $f\in\mathbb{K}[[\underline{x}]]$ is defined with respect to those equivalence relations, the finite determinancy is also expressed in terms of the Milnor and Tjurina numbers. We show that a necessary condition for $f\!\in\!\mathbb{K}[[\underline{x}]]$ to be finitely determined by the right (respectively contact) is that it has an isolated singularity (respectively is a hypersurface with isolated singularity); the necessary condition is based on a technical lemma considering $\mathbb{K}[[\underline{x}]]$ with the $\mathfrak{m}$-adic topology. Finally, considering that the orbit application, in general, is not separable in positive characteristic, it is proved that the condition is also sufficient. |