On the advances in pattern recognition using Optimum-Path Forest

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Sugi Afonso, Luis Claudio
Orientador(a): Papa, João Paulo lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Ciência da Computação - PPGCC
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/13407
Resumo: Pattern recognition (PR) techniques have been paramount to solve different and complex problems in many fields of study. The basic idea behind PR techniques is to compute a model capable of classifying unknown samples. Pattern recognition can be categorized as problems of (i) supervised, and (ii) unsupervised learning. This categorization is related to the existence or absence of labeled data to support the learning process. The learning process is mandatory for PR techniques to learn the data distribution, and the existence of labeled data is an additional information that helps to build more robust models. Many techniques were proposed and are well-established in the literature. The Optimum-Path Forest (OPF) is a graph-based classifier proposed recently, which comprises the models for supervised, semi-supervised and unsupervised learning. The OPF models dataset samples as nodes of a graph and their connections (edges) are defined by some pre-defined adjacency relation. Although very recent, OPF has already been employed in numerous applications and showed promising results, and even outperformed other well-known classifiers. Nonetheless, there is still a lot to be investigated, evaluated and proposed concerning the use and performance of the OPF classifier. This dissertation investigates e proposes variations and modifications to the traditional OPF algorithms concerning supervised and unsupervised learning aiming the assessment of its performance in not yet explored scenarios and to overcome its drawbacks.