[en] ALGORITHMS FOR MOTOR IMAGERY PATTERN RECOGNITION IN A BRAIN-MACHINE INTERFACE
Ano de defesa: | 2018 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=34769&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=34769&idi=2 http://doi.org/10.17771/PUCRio.acad.34769 |
Resumo: | [pt] Uma interface cérebro-máquina (ICM) é um sistema que permite a um indivíduo, entre outras coisas, controlar um dispositivo robótico por meio de sinais oriundos da atividade cerebral. Entre os diversos métodos para registrar os sinais cerebrais, destaca-se a eletroencefalografia (EEG), principalmente por ter uma rápida resposta temporal e não oferecer riscos ao usuário, além de o equipamento ter um baixo custo relativo e ser portátil. Muitas situações podem fazer com que uma pessoa perca o controle motor sobre o corpo, mesmo preservando todas as funções do cérebro, como doenças degenerativas, lesões medulares, entre outras. Para essas pessoas, uma ICM pode representar a única possibilidade de interação consciente com o mundo externo. Todavia, muitas são as limitações que impossibilitam o uso das ICMs da forma desejada, entre as quais estão as dificuldades de se desenvolver algoritmos capazes de fornecer uma alta confiabilidade em relação ao reconhecimento de padrões dos sinais registrados com EEG. A escolha pelas melhores posições dos eletrodos e as melhores características a serem extraídas do sinal é bastante complexa, pois é altamente condicionada à variabilidade interpessoal dos sinais. Neste trabalho um método é proposto para escolher os melhores eletrodos e as melhores características para pessoas distintas e é testado com um banco de dados contendo registros de sete pessoas. Posteriormente dados são extraídos com um equipamento próprio e uma versão adaptada do método é aplicada visando uma atividade em tempo real. Os resultados mostraram que o método é eficaz para a maior parte das pessoas e a atividade em tempo real forneceu resultados promissores. Foi possível analisar diversos aspectos do algoritmo e da variabilidade inter e intrapessoal dos sinais e foi visto que é possível, mesmo com um equipamento limitado, obter bons resultados mediante análises recorrentes para uma mesma pessoa. |