Conditional independence testing, two sample comparison and density estimation using neural networks
Ano de defesa: | 2020 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
Universidade Federal de São Carlos
Câmpus São Carlos |
Programa de Pós-Graduação: |
Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Palavras-chave em Inglês: | |
Área do conhecimento CNPq: | |
Link de acesso: | https://repositorio.ufscar.br/handle/20.500.14289/13119 |
Resumo: | Given the vast amount of data available nowadays and the rapid increase of computational processing power, the field of machine learning and the so called algorithmic modeling have seen a recent surge in its popularity and applicability. One of the tools which has attracted great popularity is artificial neural networks due, to among other things, their versatility, ability to capture complex relations and computational scalability. In this work, we therefore apply such machine learning tools into three important problems of Statistics: two-sample comparison, conditional independence testing and conditional density estimation. |