Committee of NAS-based models
Ano de defesa: | 2021 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
Universidade Federal de São Carlos
Câmpus São Carlos |
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Ciência da Computação - PPGCC
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Inglês: | |
Área do conhecimento CNPq: | |
Link de acesso: | https://repositorio.ufscar.br/handle/20.500.14289/14381 |
Resumo: | Network Architecture Search (NAS) has achieved great results and generated models comparable with humans’ classifications. Automating the definition of a neural architecture reduces the need for expert work efforts and mitigates human bias from architecture design. NAS techniques usually consist of an algorithm to search for the best architecture in a predetermined space of parameters or functions. Due to the number of deep neural architectures parameters, this search space includes millions of combinations, making NAS a cost procedure and may lead the search to overfit the training set. To reduce NAS search spaces’ complexity and still obtain competitive results, we propose CoNAS, a committee of NAS-based models, by restricting the search spaces to perform Differentiable ARchiTecture Search (DARTS). Our results point to improved accuracy over DARTS on two experimental scenarios: raining from scratch and using a transfer learning approach. |