Desenvolvimento de Nanoblendas PLA/EVOH biodegradáveis com características de barreira a gases e vapores

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Santos, Luiza Gouvêa
Orientador(a): Costa, Lidiane Cristina lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Ciência e Engenharia de Materiais - PPGCEM
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/10476
Resumo: Poly (lactic acid) (PLA) is a non-toxic, transparent and biodegradable aliphatic polyester, produced from renewable raw materials. This polymer meets several requirements for packaging applications, but is fragile and has lower gas and water vapor barrier properties, compared to polymers currently used in this application. The formation of PLA blends with poly (ethylene-co-vinyl alcohol) (EVOH), which has transparency and good gas barrier properties, is an advantageous alternative to modify this biodegradable polymer, in order to obtain better mechanical and barrier properties without loss of transparency. This research objective was to develop biodegradable PLA/EVOH nanoblends, for packaging application, through reactive extrusion followed by the production of films. EVOH was added in 3, 5 and 10 wt%. Two compatibilization systems, containing epoxy as the reactive group, and a catalyst of the reaction between epoxy and hydroxyl, were used for interfacial modification. The influence of the dispersed phase content, the use of different compatibilizers and the presence of the catalyst in the thermal, mechanical, rheological, optical and barrier properties, as well as the the morphology of the blends, were analyzed. It was possible to observe a reduction in the diameter of the dispersed EVOH particles in the PLA matrix through reactive extrusion and addition of compatibilizing systems. The reduction was even more significant with the use of the catalyst, reaching values very close to the nanometric scale, but resulted in the degradation of the PLA matrix. The blends compatibilized with GMA and peroxide presented the best mechanical performance, however still very close to the PLA matrix. The barrier properties of all blends were higher than those of PLA. The blends showed transparency when the film is positioned close to the object, thus presenting sufficient optical property for packaging application.