Uso de técnica de espectroscopia NIR no desenvolvimento de softsensor para monitoramento on-line da fermentação alcoólica industrial
Ano de defesa: | 2024 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de São Carlos
Câmpus São Carlos |
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Engenharia Química - PPGEQ
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Palavras-chave em Inglês: | |
Área do conhecimento CNPq: | |
Link de acesso: | https://repositorio.ufscar.br/handle/20.500.14289/20200 |
Resumo: | Automated control and monitoring of bioprocesses are fundamental tools for the modern biotechnology industry. Chemical introduction, for example, is a biotechnological process already well established in the sugar and alcohol industry, with high productivity and robust microorganisms. However, one factor can still be improved: bioprocess monito- ring. Detailed fermentation monitoring is carried out with at-line and off-line techniques, such as High Performance Liquid Chromatography (HPLC), which implies a delay to verify the end of fermentation and/or some disturb. NIR spectroscopy can be used to monitor bioprocesses, inferring key variables in fermentation in real time, such as resi- dual sugar concentration. A major difficulty in using this technique is the presence of intense noise at frequencies, requiring pre-treatment for its use in a soft sensor. The use of a phenomenological interference model can reduce the noise associated with experi- mental data, improving the estimation of interference variations using the chemometric technique. Given these aspects, a methodology was developed for inferring cell concentra- tion, substrate concentration and product concentration in a prepared fermentation. The methodology is based on smoothing experimental data from samples using a fermentative kinetic model. Such data were correlated with NIR spectra to adjust the chemometric model PLSR (Partial Least Squares Regression) and construct the virtual sensor. Three fed-batch fermentations were used to construct the detection set and three batches were used to validate the sensor. |