Teoremas limite para variáveis aleatórias de Bernoulli dependentes

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Rezende, Bruna Luiza de Faria
Orientador(a): Gava, Renato Jacob lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/ufscar/18039
Resumo: In this work, we consider a sequence of correlated Bernoulli variables whose probability of success for the current trial depends conditionally on previous trials. This conditional probability is given as a linear function of the sample mean and has two parameters of which one can assume negative values. We established for this model the strong law of large numbers, an almost sure and L^p convergence, a Gaussian fluctuation of the sum of the random variables with the proposed distribution, an almost sure invariance principle and a weak invariace pinciple, the central limit theorem and the law of the iterated logarithm. Furthermore, we apply all our results to the minimal random walk, a physical model with interesting diffusion characteristics.