Classificação de imagens tomográficas de ciência dos solos utilizando redes neurais e combinação de classificadores

Detalhes bibliográficos
Ano de defesa: 2006
Autor(a) principal: Breve, Fabricio Aparecido
Orientador(a): Mascarenhas, Nelson Delfino d'Ávila lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Ciência da Computação - PPGCC
Departamento: Não Informado pela instituição
País: BR
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/ufscar/309
Resumo: Pattern Recognition is a subject being used in a multidisciplinary scope, with different approaches. One of them is its application in computerized tomography images, commonly acquired in order to do medical diagnosis, but they have been used in several other applications as well, including Soil Science. The objective of this work is to study and to discuss the performance of neural network-based classifiers (Multilayer Perceptron and Radial Basis Functions) and classifier combiners (Bagging, Decision Templates and Dempster-Shafer) applied to identify materials in Soil Science multispectral images, acquired using Computerized Tomography. The results were evaluated by error estimation by Hold- Out and the Kappa coefficient.