Combinação de múltiplos classificadores para identificação de materiais em imagens ruidosas

Detalhes bibliográficos
Ano de defesa: 2004
Autor(a) principal: Ponti Junior, Moacir Pereira
Orientador(a): Mascarenhas, Nelson Delfino d'Ávila lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Ciência da Computação - PPGCC
Departamento: Não Informado pela instituição
País: BR
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/ufscar/493
Resumo: Material identification in images has been explored in multiple areas and very interesting applications are arising in this field. This work uses noisy multispectral images from a computerized tomograph scanner acquired with multiple energies for soil sciences applications and developes a recognition system to identify materials on the scanned body. Techniques of statistical classification were used. The individual classifiers: Parzen, k-nearest neighbors, logistic and linear Bayesian were combined in order to study the behavior of classifier combination techniques. For this task, we used the fixed rules combiners: majority voting, maximum, minimum, median, sum and product. Also, a second stage of combination was considered and used, the majority voting of combiners. The performance of the classifiers was analyzed through the leave-one-out cross-validation error estimation method and the Kappa coefficient. The advantages of the use of multiple energies in the problems of identification of images and the behavior of each combination method are also demonstrated. The results pointed out that the combination of classifiers gives better capacity of generalization and more stable results than the individual classifiers, using information supplied for all individual classifiers, including the weakest one, being recommended in classification of scarce, difficult discrimination data, on the presence of ambiguity or high`noise levels.