Normalização textual e indexação semântica aplicadas da filtragem de SMS spam

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Silva, Tiago Pasqualini da
Orientador(a): Almeida, Tiago Agostinho de lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Câmpus Sorocaba
Programa de Pós-Graduação: Programa de Pós-Graduação em Ciência da Computação - PPGCC-So
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/20.500.14289/8811
Resumo: The rapid popularization of smartphones has contributed to the growth of SMS usage as an alternative way of communication. The increasing number of users, along with the trust they inherently have in their devices, makes SMS messages a propitious environment for spammers. In fact, reports clearly indicate that volume of mobile phone spam is dramatically increasing year by year. SMS spam represents a challenging problem for traditional filtering methods nowadays, since such messages are usually fairly short and normally rife with slangs, idioms, symbols and acronyms that make even tokenization a difficult task. In this scenario, this thesis proposes and then evaluates a method to normalize and expand original short and messy SMS text messages in order to acquire better attributes and enhance the classification performance. The proposed text processing approach is based on lexicography and semantic dictionaries along with the state-of-the-art techniques for semantic analysis and context detection. This technique is used to normalize terms and create new attributes in order to change and expand original text samples aiming to alleviate factors that can degrade the algorithms performance, such as redundancies and inconsistencies. The approach was validated with a public, real and non-encoded dataset along with several established machine learning methods. The experiments were diligently designed to ensure statistically sound results which indicate that the proposed text processing techniques can in fact enhance SMS spam filtering.