$L^2$ estimates for the operators $ \bar\partial $ and $ \bar\partial_b $

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Coacalle, Joel Rogelio Portada
Orientador(a): Hoepfner, Gustavo lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Matemática - PPGM
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/ufscar/12022
Resumo: The purpose of this work is to establish sufficient conditions for closed range estimates on $(0,q)$-forms, for some fixed $q$, $1 \leq q \leq n-1$, for $\bar\partial_b$ in both $L^2$ and $L^2$-Sobolev spaces in embedded, not necessarily pseudoconvex CR manifolds of hypersurface type. The condition, named weak $Y(q)$, is both more general than previously established sufficient conditions and easier to check. Applications of our estimates include estimates for the Szeg\"o projection as well as an argument that the harmonic forms have the same regularity as the complex Green operator. We use a microlocal argument and carefully construct a norm that is well-suited for a microlocal decomposition of form. We do not require that the CR manifold is the boundary of a domain. Finally, we provide an example that demonstrates that weak $Y(q)$ is an easier condition to verify than earlier, less general conditions.