Detalhes bibliográficos
Ano de defesa: |
2009 |
Autor(a) principal: |
Roque, Michele Regina Dornelas [UNESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/94199
|
Resumo: |
Nesta dissertação, estuda-se estruturas matemáticas relacionadas à álgebra dos sedenions de Cayley-Dickson. O conceito de funções sedeniônicas do tipo f(z) = zn, z 2 S e n 2 N, é desenvolvido a partir da distância jf(y)¡f(x)j, com o objetivo de obter-se uma generalização. A este tipo de mapeamentos trata-se por funções quaseconformes, ou seja, mapeamentos que não preservam a magnitude dos ângulos. Em particular, através de métodos de resolução, apresenta-se e discute-se polinômios de 2n graus com coeficientes sedeniônicos com o intuito de enfatizar o valor da k-dilatação causada quando trabalha-se com o número sedeniônico em coordenadas esféricas. Por fim, ilustra-se geometricamente os cortes produzidos em hiperesferas B(x; r) quando submetidas às transformações do tipo z2 e z3. |