Um procedimento para seleção de variáveis em modelos lineares generalizados duplos

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Cavalaro, Lucas Leite
Orientador(a): Pereira, Gustavo Henrique de Araujo lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Câmpus São Carlos
Programa de Pós-Graduação: Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/ufscar/11412
Resumo: The double generalized linear models (DGLM), unlike the generalized linear model (GLM), allow the fit of the dispersion parameter of the response variable as a function of predictor variables, improving the way of modeling phenomena. Thus, they are a possible solution when the assumption that the constant dispersion parameter is unreasonable and the response variable has distribution belonging to the exponential family. Considering our interest in variable selection in this class of models, we studied the two-step variable selection scheme proposed by Bayer and Cribari-Neto (2015) and, based on this method, we developed a scheme to select variables in up to “k” steps. To check the performance of our procedure, we performed Monte Carlo simulation studies in DGLM. The results indicate that our procedure for variable selection presents, in general, similar or superior performance than the other studied methods without requiring a large computational cost. We also evaluated the scheme to select variables in up to “k” steps in a set of real data and compared it with different regression methods. The results showed that our procedure can also be a good alternative when the interest is in making predictions.