Um procedimento para seleção de variáveis em modelos lineares generalizados duplos
Ano de defesa: | 2019 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de São Carlos
Câmpus São Carlos |
Programa de Pós-Graduação: |
Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Palavras-chave em Inglês: | |
Área do conhecimento CNPq: | |
Link de acesso: | https://repositorio.ufscar.br/handle/ufscar/11412 |
Resumo: | The double generalized linear models (DGLM), unlike the generalized linear model (GLM), allow the fit of the dispersion parameter of the response variable as a function of predictor variables, improving the way of modeling phenomena. Thus, they are a possible solution when the assumption that the constant dispersion parameter is unreasonable and the response variable has distribution belonging to the exponential family. Considering our interest in variable selection in this class of models, we studied the two-step variable selection scheme proposed by Bayer and Cribari-Neto (2015) and, based on this method, we developed a scheme to select variables in up to “k” steps. To check the performance of our procedure, we performed Monte Carlo simulation studies in DGLM. The results indicate that our procedure for variable selection presents, in general, similar or superior performance than the other studied methods without requiring a large computational cost. We also evaluated the scheme to select variables in up to “k” steps in a set of real data and compared it with different regression methods. The results showed that our procedure can also be a good alternative when the interest is in making predictions. |